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Fig. 1. DCG-MAP-Elites-AI implements a conventional MAP-Elites loop comprising selection, variation, evaluation, addition and

leverages two complementary variation operators: a standard Genetic Algorithm (GA) variation operator for diversity and a descriptor-

conditioned Policy Gradient (PG) variation operator for quality. Concurrently to the critic’s training, the knowledge of the archive is

distilled in the descriptor-conditioned actor. In turn, this versatile actor is injected (AI) in the offsprings at each iteration.

A fundamental trait of intelligence involves finding novel and creative solutions to address a given challenge or to adapt to unforeseen
situations. Reflecting this, Quality-Diversity optimization is a family of Evolutionary Algorithms, that generates collections of both
diverse and high-performing solutions. Among these, MAP-Elites is a prominent example, that has been successfully applied to
a variety of domains, including evolutionary robotics. However, MAP-Elites performs a divergent search with random mutations
originating from Genetic Algorithms, and thus, is limited to evolving populations of low-dimensional solutions. PGA-MAP-Elites
overcomes this limitation using a gradient-based variation operator inspired by deep reinforcement learning which enables the
evolution of large neural networks. Although high-performing in many environments, PGA-MAP-Elites fails on several tasks where
the convergent search of the gradient-based variation operator hinders diversity. In this work, we present three contributions: (1) we
enhance the Policy Gradient variation operator with a descriptor-conditioned critic that reconciles diversity search with gradient-based
methods, (2) we leverage the actor-critic training to learn a descriptor-conditioned policy at no additional cost, distilling the knowledge
of the population into one single versatile policy that can execute a diversity of behaviors, (3) we exploit the descriptor-conditioned
actor by injecting it in the population, despite network architecture differences. Our method, DCG-MAP-Elites-AI, achieves equal or
higher QD score and coverage compared to all baselines on seven challenging continuous control locomotion tasks.

CCS Concepts: • Computing methodologies→ Evolutionary robotics; Sequential decision making.

Additional Key Words and Phrases: Quality-Diversity, Reinforcement Learning, Neuroevolution, MAP-Elites, Policy Gradient

ACM Reference Format:
Anonymous Author(s). 2018. Synergizing Quality-Diversity with Descriptor-Conditioned Reinforcement Learning. In . ACM, New
York, NY, USA, 30 pages. https://doi.org/XXXXXXX.XXXXXXX

2018. Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1 INTRODUCTION

A fascinating aspect of evolution is its ability to generate a variety of different species, each being adapted to their
niche. Inspired by this idea, Quality-Diversity (QD) optimization is a family of evolutionary algorithms that aims to
generate a set of both high-performing and diverse solutions to a single problem [5, 9, 35]. Contrary to traditional
optimization methods that return a single high-performing solution, the goal of QD algorithms is to illuminate a search
space of interest called descriptor space [30]. Producing a large collection of diverse and effective solutions enables to
get multiple alternatives to solve a single problem, which is useful in robotics to improve robustness, recover from
damage [8] or reduce the reality gap [6]. Furthermore, conventional optimization methods are prone to get stuck in
local optima, whereas keeping a repertoire of diverse solutions to a given problem can help to find stepping stones that
lead to globally better solutions [30, 31]. Another benefit of diversity search is efficient exploration in problems where
the reward signal is sparse or deceptive [4, 10, 34].

MAP-Elites [30] is a conceptually simple but effective QD optimization algorithm that has shown competitive
results in a variety of applications, to generate large collections of diverse skills. However, MAP-Elites relies on random
variations that can cause slow convergence in large search spaces [7, 31, 34], making it inadequate to evolve neural
networks with a large number of parameters.

In contrast, Deep Reinforcement Learning (RL) [29] algorithms combine reinforcement learning with the directed
search power of gradient-based methods in order to learn a single optimal solution. RL has led to remarkable accomplish-
ments in various areas, including in discrete environments like video games [45], board games [39] and in continuous
control domains for locomotion [21, 23] and manipulation [32]. These achievements highlight the exceptional capabili-
ties of RL algorithms in addressing specific challenges. Especially, policy gradient methods have shown state-of-the-art
results in learning large neural network policies with thousands of parameters in high-dimensional and continuous
domains [21, 28, 40].

PGA-MAP-Elites [31] is an extension of MAP-Elites that integrates the sample efficiency of RL algorithms using
TD3 [19]. It combines a Policy Gradient (PG) variation operator for efficient fitness improvement, coupled with the
usual Genetic Algorithm (GA) variation operator. The PG variation operator leverages gradients derived from RL to
drive mutations towards the global fitness optimum and is supported by the divergent search of the GA variation
operator for both exploration and optimization [13]. Other recent works have also introduced methods to combine the
strength of QD algorithms with reinforcement learning [34, 42] on complex robotics tasks.

PGA-MAP-Elites achieves state-of-the-art performances in most of the environments considered so far in the
literature [31, 34, 42]. However, the PG variation operator becomes ineffective in tasks where the global optimum is in
an area of the search space that is not likely to produce offspring that are added to the archive. For example, consider a
locomotion task where the fitness is the opposite of the energy consumption and the descriptor is defined as the final
position of the robot. The global optimum for the fitness is the solution that does not move in order to minimize energy
consumption. Thus, the PG variation operator will encourage solutions to stay motionless, collapsing their descriptors
to a single point, the descriptor of the global optimum. Consequently, the PG variation operator generates offspring
that are discarded and no interesting stepping stone is found, thereby hindering diversity.

DCG-MAP-Elites GECCO [12] builds upon PGA-MAP-Elites algorithm by enhancing the PG variation operator
with a descriptor-conditioned critic that provides gradients depending on a target descriptor. The descriptor-conditioned
critic takes as input a state and a target descriptor to evaluate actions. Thus, the PG variation operator can mutate

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

DCG-MAP-Elites Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

solutions to produce offsprings with higher fitness while targeting a desired descriptor, thereby avoiding to collapse
their descriptors to a single point.

Furthermore, the descriptor-conditioned critic undergoes training utilizing the RL algorithm TD3 that requires to
train an actor in parallel. We take advantage of this intertwined actor-critic training to make the actor ‘descriptor-
conditioned’ as well, allowing it to take actions based not only on the current state but also on a target descriptor we
want to achieve. Thus, instead of taking actions that maximize the fitness globally, the actor now takes actions that
maximize the fitness while achieving a target descriptor. At the end of training, the result is a versatile agent that can
achieve the diversity of behaviors contained in the archive while obtaining similar fitness performance, negating the
burden of dealing with a collection of thousands of solutions. In addition to archive distillation, DCG-MAP-Elites
GECCO has been shown to improve performance significantly over PGA-MAP-Elites on omnidirectional tasks, while
maintaining similar performance on unidirectional tasks where no improvement was expected.

Finally, drawing inspiration from PGA-MAP-Elites that injects the actor in the population at each generation, we
extend the original DCG-MAP-Elites GECCO version [12] with a descriptor-conditioned Actor Injection (AI), that
enables to inject the versatile actor in the population, despite network architecture differences.

In summary, we introduce DCG-MAP-Elites-AI (Descriptor-Conditioned Gradients MAP-Elites with Actor Injection)
that extends DCG-MAP-Elites GECCO and present three contributions: (1) we enhance the PG variation operator
with a descriptor-conditioned critic, (2) we distill the knowledge of the archive into one single versatile policy at no
additional cost, (3) we take advantage of this high-performing and versatile policy to improve the population during
training with actor injection, further improving our method. We compare our algorithm to four state-of-the-art QD
algorithms on seven challenging continuous control locomotion tasks. Our method, DCG-MAP-Elites-AI, achieves
equal or higher QD score and coverage compared to all baselines on seven challenging continuous control locomotion
tasks.

2 BACKGROUND

2.1 Problem Statement

We consider an agent sequentially interacting with an environment at discrete time steps 𝑡 for an episode of length 𝑇 .
At each time step 𝑡 , the agent observes a state 𝑠𝑡 , takes an action 𝑎𝑡 and receives a scalar reward 𝑟𝑡 . We model it as a
Markov Decision Process (MDP) which comprises a state space S, a continuous action space A, a stationary transition

dynamics distribution 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) and a reward function 𝑟 : S × A → R. In this work, a policy (also called solution) is
a deterministic neural network parameterized by 𝜙 ∈ Φ, and denoted 𝜋𝜙 : S → A. The agent uses its policy to select
actions and interact with the environment to give a trajectory of states, actions and rewards. The fitness of a solution is
given by 𝐹 : Φ→ R, defined as the expected discounted return E𝜋𝜙

[∑𝑇−1
𝑡=0 𝛾𝑡𝑟𝑡

]
.

In this setting, the objective of QD algorithms is to find the highest fitness solutions in each point of the descriptor
spaceD. The descriptor function𝐷 : Φ→ D is generally defined by the user and characterizes solutions in a meaningful
way for the type of diversity desired. With this notation, our objective is to evolve a population of solutions that are
both high-performing with respect to 𝐹 and diverse with respect to 𝐷 .

2.2 MAP-Elites

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [30] is a simple yet effective QD algorithm, that discretizes
the descriptor space D into a multi-dimensional grid of cells called archive X and searches for the best solution in each
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cell, see Algorithm 14. The goal of the algorithm is to return an archive that is filled as much as possible with high-fitness
solutions. MAP-Elites starts by generating random solutions and adding them to the archive. The algorithm then
repeats the following steps until a budget of 𝐼 solutions have been evaluated: (1) a batch of solutions from the archive
are uniformly selected and modified through mutations and/or crossovers to produce offspring, (2) the fitnesses and
descriptors of the offspring are evaluated, and each offspring is placed in its corresponding cell if and only if the cell is
empty or if the offspring has a better fitness than the current solution in that cell, in which case the current solution
is replaced. As most evolutionary methods, MAP-Elites relies on undirected updates that are agnostic to the fitness
objective. With a Genetic Algorithm (GA) variation operator, MAP-Elites performs a divergent search that may cause
slow convergence in high-dimensional problems due to a lack of directed search power, and thus, is performing best on
low-dimensional search space [31].

2.3 Deep Reinforcement Learning

Deep Reinforcement Learning (RL) [29] combines the reinforcement learning framework with the function approxima-
tion capabilities of deep neural networks to represent policies and value functions in high-dimensional state and action
spaces. In opposition to black-box optimization methods like evolutionary algorithms, RL leverages the structure of
the MDP in the form of the Bellman equation to achieve better sample efficiency. The objective is to find an optimal
policy 𝜋𝜙 , which maximizes the expected return or fitness 𝐹 (𝜋𝜙 ). In reinforcement learning, many approaches try to
estimate the action-value function 𝑄𝜋 (𝑠, 𝑎) = E𝜋

[∑𝑇−𝑡−1
𝑖=0 𝛾𝑖𝑟𝑡+𝑖 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
defined as the expected discounted

return starting from state 𝑠 , taking action 𝑎 and thereafter following policy 𝜋 .
The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [19] is an actor-critic, off-policy reinforcement

learning method that achieves state-of-the-art results in environments with large and continuous action space. TD3
indirectly learns a policy 𝜋𝜙 via maximization of the action-value function 𝑄𝜃 (𝑠, 𝑎). The approach is closely connected
to 𝑄-learning [19] and tries to approximate the optimal action-value function 𝑄∗ (𝑠, 𝑎) in order to find the optimal
action 𝜋∗ (𝑠) = argmax𝑎 𝑄∗ (𝑠, 𝑎). However, computing the maximum over action in max𝑎 𝑄𝜃 (𝑠, 𝑎) is intractable in
continuous action space, hence it is approximated using max𝑎 𝑄𝜃 (𝑠, 𝑎) = 𝑄𝜃 (𝑠, 𝜋𝜙 (𝑠)). In TD3, the policy 𝜋𝜙 takes
actions in the environment and the transitions are stored in a replay buffer. The collected experience is then used to
train a pair of critics 𝑄𝜃1 , 𝑄𝜃2 using temporal difference. Target networks 𝑄𝜃1

′ , 𝑄𝜃2
′ are updated to slowly track the

main networks. Both critics use a single regression target 𝑦, calculated using whichever of the two target critics gives a
smaller estimated value and using target policy smoothing by sampling a noise 𝜖 ∼ clip(N (0, 𝜎),−𝑐, 𝑐):

𝑦 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 min
𝑖=1,2

𝑄𝜃𝑖
′ (𝑠𝑡+1, 𝜋𝜙 ′ (𝑠𝑡+1) + 𝜖) (1)

Both critics are learned by regression to this target and the policy is learned with a delay, only updated every Δ iterations
simply by maximizing 𝑄𝜃1 with max𝜙 E

[
𝑄𝜃1 (𝑠, 𝜋𝜙 (𝑠))

]
. The actor is updated using the deterministic policy gradient:

∇𝜙 𝐽 (𝜙) = E
[
∇𝜙𝜋𝜙 (𝑠)∇𝑎𝑄𝜃1 (𝑠, 𝑎) |𝑎=𝜋𝜙 (𝑠 )

]
(2)

2.4 PGA-MAP-Elites

Policy Gradient Assisted MAP-Elites (PGA-MAP-Elites) [31] is an extension of MAP-Elites that is designed to evolve
deep neural networks by combining the directed search power and sample efficiency of RL methods with the exploration
capabilities of genetic algorithms, see Algorithm 9. The algorithm follows the usual MAP-Elites loop of selection,
variation, evaluation and addition for a budget of 𝐼 iterations, but uses two parallel variation operators: half of the
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offspring are generated using a standard Genetic Algorithm (GA) variation operator and half of the offspring are
generated using a Policy Gradient (PG) variation operator. During each iteration of the loop, PGA-MAP-Elites stores
the transitions from offspring evaluation in a replay buffer B and uses it to train a pair of critics based on the TD3
algorithm, described in Algorithm 10. The trained critic is then used in the PG variation operator to update the selected
solutions from the archive for𝑚 gradient steps to select actions that maximize the approximated action-value function,
as described in Algorithm 11. At each iteration, the critics are trained for 𝑛 steps of gradients descents towards the
target described in Equation (1), averaged over 𝑁 transitions of experience sampled uniformly from the replay buffer B.
The actor learns with a delay Δ via maximization of the critic according to Equation (2).

3 RELATEDWORK

3.1 Scaling QD to Neuroevolution

The challenge of evolving diverse solutions in a high-dimensional search space has been an active research subject
over recent years. MAP-Elites-ES [7] scales MAP-Elites to high-dimensional solutions parameterized by large neural
networks. This algorithm leverages Evolution Strategies [36] (ES) to perform a directed search that is more efficient
than random mutations used in Genetic Algorithms. Fitness and novelty gradients are estimated locally from many
perturbed versions of the parent solution to generate a new one. The population tends towards regions of the parameter
space with higher fitness or novelty but it requires to sample and evaluate a large number of solutions, making it
particularly data inefficient. To improve sample efficiency, methods that combine MAP-Elites with RL [31, 33, 34, 42]
have emerged and use time step level information to efficiently evolve populations of high-performing and diverse
neural network for complex tasks. PGA-MAP-Elites [31] uses policy gradients for part of its mutations, see Section 2.4
for details. CMA-MEGA [42] estimates descriptor gradients with ES and combines the fitness gradient and the descriptor
gradients with a CMA-ES mechanism [16, 22]. QD-PG [34] introduces a diversity reward based on the novelty of the
states visited and derives a policy gradient for the maximization of those diversity rewards which helps exploration in
settings where the reward is sparse or deceptive. PBT-MAP-Elites [33] mixes MAP-Elites with a population based
training process [25] to optimize hyper-parameters of diverse RL agents. Interestingly, recent work [41] scales the
algorithm CMA-MAE [17] to high-dimensional policies on robotics tasks with pure ES while showing comparable data
efficiency to QD-RL approaches, but is still outperformed by PGA-MAP-Elites.

3.2 Conditioning the critic

None of the methods described in the previous section take a descriptor into account when deriving policy gradients used
to mutate solutions. In other words, they do not use descriptor-conditioned policies nor descriptor-conditioned critics as
our method does. The concept of descriptor-conditioned critic is related to Universal Value Function Approximators [37],
extensively used in skill discovery reinforcement learning, a field that share a similar motivation to QD [2]. In VIC,
DIAYN, DADS, SMERL [11, 20, 27, 38], the actors and critics are conditioned on a sampled prior but does not correspond
to a real posterior like in DCG-MAP-Elites-AI. Furthermore, those methods use a notion of diversity defined at the
step-level rather than trajectory-level like DCG-MAP-Elites-AI. Moreover, they do not use an archive to store a
population, resulting in much smaller sets of final policies. Finally, it has been shown that QD methods are competitive
with skill discovery reinforcement learning algorithms [2], specifically for adaptation and hierarchical learning.
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3.3 Archive distillation

Distilling the knowledge of an archive into a single policy is an alluring process that reduces the number of parameters
outputted by the algorithm and enables generalization and interpolation/extrapolation. Although distillation is usually
referring to policy distillation — learning the observation/action mapping from a teacher policy — we present archive
distillation as a general term referring to any kind of knowledge transfer from an archive to another model, should it be
the policies, transitions experienced in the environment, full trajectories or discovered descriptors.

To the best of our knowledge, only two QD-related works use the concept of archive distillation. Go-Explore [10]
keeps an archive of states and trains a goal-conditioned policy to reproduce the trajectory of the policy that reached
that state. Another related approach is to learn a generative policy network [26] over the policies contained in the
archive. Our approach DCG-MAP-Elites-AI distills the experience of the archive into a single versatile policy.

4 METHODS

Algorithm 1 DCG-MAP-Elites-AI
Require: GA batch size 𝑏GA, PG batch size 𝑏PG, Actor Injection batch size 𝑏AI, total batch size 𝑏 = 𝑏GA + 𝑏PG + 𝑏AI

Initialize archive X with 𝑏 random solutions and replay buffer B
Initialize critic networks 𝑄𝜃1 , 𝑄𝜃2 and actor network 𝜋𝜙
𝑖 ← 0
while 𝑖 < 𝐼 do

train_actor_critic(𝜋𝜙 , 𝑄𝜃1 , 𝑄𝜃2 ,B)
𝜋𝜓1 , . . . , 𝜋𝜓𝑏

← selection(X)
𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏GA
← variation_ga(𝜋𝜓1 , . . . , 𝜋𝜓𝑏GA

)
𝜋
𝜓𝑏GA+1

, . . . , 𝜋
𝜓𝑏GA+𝑏PG

← variation_pg(𝜋𝜓𝑏GA+1
, . . . , 𝜋𝜓𝑏GA+𝑏PG

, 𝑄𝜃1 ,B)
𝜋
𝜓𝑏GA+𝑏PG+1

, . . . , 𝜋
𝜓𝑏
← actor_injection(𝜋𝜙 )

addition(𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏
,X,B)

𝑖 ← 𝑖 + 𝑏
function addition(𝜋

𝜓
. . . ,X,B)

for 𝜋
𝜓
. . . do

(𝑓 , transitions) ← 𝐹 (𝜋
𝜓
), 𝑑 ← 𝐷 (𝜋

𝜓
)

insert(B, transitions)
if X(𝑑) = ∅ or 𝐹 (X(𝑑)) < 𝑓 then
X(𝑑) ← 𝜋

𝜓

Our method Descriptor-Conditioned Gradients MAP-Elites with Actor Injection (DCG-MAP-Elites-AI) overcomes
the limitations of PGA-MAP-Elites by leveraging a descriptor-conditioned critic to improve the PG variation operator
and concurrently distills the knowledge of the archive in a single versatile policy as a by-product of the actor-critic
training. The pseudocode is provided in Algorithm 1. The algorithm follows the usual MAP-Elites loop of selection,
variation, evaluation and addition for a budget of 𝐼 iterations. Two complementary and independent variation operators
are used in parallel: (1) a standard GA operator (2) a descriptor-conditioned PG operator. At each iteration, the transitions
from the evaluation step are stored in a replay buffer and used to train an actor-critic pair based on TD3.

Contrary to PGA-MAP-Elites, the actor-critic pair is descriptor-conditioned. In addition to the state 𝑠 and action 𝑎,
the critic 𝑄𝜃 (𝑠, 𝑎 | 𝑑) also depends on the descriptor 𝑑 and estimates the expected discounted return starting from state
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𝑠 , taking action 𝑎 and thereafter following policy 𝜋 and achieving descriptor 𝑑 . In this work, to achieve descriptor 𝑑
means that the trajectory generated by the policy 𝜋 has descriptor 𝑑 . In addition to the state 𝑠 , the actor 𝜋𝜙 (𝑠 | 𝑑) also
depends on a target descriptor 𝑑 and maximizes the expected discounted return conditioned on achieving the target
descriptor 𝑑 . Thus, the goal of the descriptor-conditioned actor is to achieve the desired descriptor 𝑑 while maximizing
fitness.

4.1 Descriptor-Conditioned Critic

Instead of estimating the action-value function with 𝑄𝜃 (𝑠, 𝑎), we want to estimate the descriptor-conditioned action-
value function with 𝑄𝜃 (𝑠, 𝑎 | 𝑑). When a policy 𝜋 interacts with the environment, it generates a trajectory, which is a
sequence of transitions (𝑠, 𝑎, 𝑟, 𝑠′) with descriptor 𝑑 . We extend the definition of a transition (𝑠, 𝑎, 𝑟, 𝑠′) to include the
observed descriptor 𝑑 of the trajectory (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑). However, the descriptor is only available at the end of the episode,
therefore the transitions can only be augmented with the descriptor after the episode is completed. In all the tasks we
consider, the reward function is positive 𝑟 : S × A → R+ and hence, the fitness function 𝐹 and action-value function
are positive as well. Thus, for any target descriptor 𝑑′ ∈ D, we define the descriptor-conditioned critic as equal to the
normal action-value function when the policy achieves the target descriptor 𝑑′ and as equal to zero when the policy
does not achieve the target descriptor 𝑑′. Given a transition (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑), and a target descriptor 𝑑′ sampled in D,

𝑄𝜃 (𝑠, 𝑎 | 𝑑′) :=

𝑄𝜃 (𝑠, 𝑎), if 𝑑 = 𝑑′

0, if 𝑑 ≠ 𝑑′
(3)

However, with this piecewise definition, the descriptor-conditioned action-value function is not continuous and violates
the universal approximation theorem continuity hypothesis [24]. To address this issue, we introduce a similarity function

𝑆 : D2 →]0, 1] defined as 𝑆 (𝑑, 𝑑′) = 𝑒−
| |𝑑−𝑑′ | |D

𝑙 to smooth the descriptor-conditioned critic and relax Equation (3) into:

𝑄𝜃

(
𝑠, 𝑎 | 𝑑′

)
= 𝑆 (𝑑,𝑑′)𝑄𝜃 (𝑠, 𝑎) = 𝑆 (𝑑, 𝑑′) E𝜋

[
𝑇−𝑡−1∑︁
𝑖=0

𝛾𝑖𝑟𝑡+𝑖

�����𝑠, 𝑎
]

= E𝜋

[
𝑇−𝑡−1∑︁
𝑖=0

𝛾𝑖𝑆 (𝑑, 𝑑′)𝑟𝑡+𝑖

�����𝑠, 𝑎
]

(4)

With Equation (4), we demonstrate that learning the descriptor-conditioned critic is equivalent to scaling the reward by
the similarity 𝑆 (𝑑,𝑑′) between the descriptor of the trajectory 𝑑 and the target descriptor 𝑑′. Therefore, the critic target
in Equation (1) is modified to include the similarity scaling and the descriptor-conditioned actor:

𝑦 = 𝑆 (𝑑,𝑑′) 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 min
𝑖=1,2

𝑄𝜃𝑖
′ (𝑠𝑡+1, 𝜋𝜙 ′ (𝑠𝑡+1 | 𝑑′) + 𝜖 | 𝑑′) (5)

If the target descriptor 𝑑′ is approximately equal to the observed descriptor 𝑑 of the trajectory 𝑑 ≈ 𝑑′, then we have
𝑆 (𝑑, 𝑑′) ≈ 1 so the reward is unchanged. However, if the descriptor 𝑑′ is different from the observed descriptor 𝑑 , then
the reward is scaled down to 𝑆 (𝑑, 𝑑′) 𝑟 (𝑠𝑡 , 𝑎𝑡 ) ≈ 0. The scaling ensures that the magnitude of the reward depends not
only on the quality of the action 𝑎 with regards to the fitness function 𝐹 , but also on achieving the target descriptor
𝑑′. Given one transition (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑), we can generate infinitely many critic updates by sampling a target descriptor
𝑑′ ∈ D. This is leveraged in the new actor-critic training introduced with DCG-MAP-Elites-AI, which is detailed in
Algorithm 2 and Section 4.3.
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4.2 Descriptor-Conditioned Actor and Archive Distillation

The training of the critic requires to train an actor 𝜋𝜙 to approximate the optimal action 𝑎∗, as explained in Section 2.3.
However, in this work, the action-value function estimated by the critic is conditioned on a descriptor 𝑑 . Hence, we
don’t want 𝜋𝜙 to estimate the best action globally, but rather the best action given that it achieves the target descriptor 𝑑 .
Therefore, the actor is extended to a descriptor-conditioned policy 𝜋𝜙 (𝑠 | 𝑑), that maximizes the descriptor-conditioned
critic’s value with max𝜙 E

[
𝑄𝜃 (𝑠, 𝜋𝜙 (𝑠 | 𝑑) | 𝑑)

]
. The actor is updated using the deterministic policy gradient, see

Algorithm 2:

∇𝜙 𝐽 (𝜙) =
1
𝑁

∑︁
∇𝜙𝜋𝜙 (𝑠 | 𝑑′)∇𝑎𝑄𝜃1 (𝑠, 𝑎 | 𝑑

′) |𝑎=𝜋𝜙 (𝑠 |𝑑 ′ ) (6)

The policy 𝜋𝜙 (𝑠 | 𝑑) learns to suggest actions 𝑎 that optimize the return while generating a trajectory achieving
descriptor 𝑑 . Consequently, the descriptor-conditioned actor can exhibit a wide range of descriptors, effectively distilling
some of the capabilities of the archive into a single versatile policy.

4.3 Actor-Critic Training

Algorithm 2 Descriptor-conditioned Actor-Critic Training

function train_actor_critic(𝜋𝜙 , 𝑄𝜃1 , 𝑄𝜃2 ,B)
for 𝑡 = 1→ 𝑛 do

Sample 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑, 𝑑′) from B
Sample smoothing noise 𝜖
𝑦 ← 𝑆 (𝑑,𝑑′) 𝑟 + 𝛾 min

𝑖=1,2
𝑄𝜃 ′

𝑖
(𝑠′, 𝜋𝜙 ′ (𝑠′ | 𝑑′) + 𝜖 | 𝑑′)

Update both critics by regression to 𝑦
if 𝑡 mod Δ then

Update actor using the deterministic policy gradient:
1
𝑁

∑∇𝜙𝜋𝜙 (𝑠 | 𝑑′)∇𝑎𝑄𝜃1 (𝑠, 𝑎 | 𝑑′) |𝑎=𝜋𝜙 (𝑠 |𝑑 ′ )
Soft-update target networks 𝑄𝜃𝑖′ and 𝜋𝜙 ′

In Section 4.1, we show that the descriptor-conditioned critic target𝑦 in Equation (5) requires a transition (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)
and a target descriptor 𝑑′. Most related methods that are conditioned on skills or goals rely on a sampling strategy. For
example, HER [1] is a goal-conditioned reinforcement learning algorithm that relies on a handcrafted goal sampling
strategy and DIAYN, DADS, SMERL sample skills from a uniform prior distribution. However, in this work, we don’t
need to rely on an explicit descriptor sampling strategy.

For each PG variation operator offspring, the transitions coming from the evaluation step, are populated with 𝑑′

equal to the descriptor of the parent solution 𝑑𝜓 . The PG variation operator mutates the parent to improve fitness while
achieving descriptor 𝑑𝜓 . Thus, although the offspring is not descriptor-conditioned, its implicit target descriptor is 𝑑𝜓 .
Consequently, we set the target descriptor 𝑑′ to the descriptor of the parent 𝑑𝜓 .

Similarly, for each GA variation operator offspring, the transitions coming from the evaluation step, are populated
with 𝑑′ equal to the observed descriptor of the trajectory 𝑑 . The GA variation operator mutates the parent by adding
random noise to the genotype. However, a small random change in the parameters of the parent solution can induce big
changes in the behavior of the offspring, making them behaviorally different. Consequently, we set the target descriptor
𝑑′ to the observed descriptor of the trajectory 𝑑 .

At the end of the evaluation step, we augment the transitions with the observed descriptor of the trajectory 𝑑 , and
with the target descriptor 𝑑′, using the implicit descriptor sampling strategy explained above, giving (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑, 𝑑′).
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This implicit descriptor sampling strategy has two benefits. First, half of the transitions have 𝑑 = 𝑑′, providing the
actor-critic training with samples where the target descriptor is achieved, therefore alleviating sparse reward problems.
Second, at the beginning of the training process, half of the transitions will have 𝑑 ≠ 𝑑′ because the solutions in the
archive have not learned to accurately achieve their descriptors yet. However, as training goes on, the number of
samples where the descriptor is not achieved will decrease, providing some kind of automatic curriculum. Finally, the
actor-critic training is adapted from TD3 and is given in Algorithm 2.

4.4 Descriptor-Conditioned PG Variation

Algorithm 3 Descriptor-conditioned PG Variation

function variation_pg(𝜋𝜓 . . . , 𝑄𝜃1 ,B)
for 𝜋𝜓 . . . do

𝑑𝜓 ← 𝐷 (𝜋𝜓 )
for 𝑖 = 1→𝑚 do

Sample 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑, 𝑑′) from B
Update actor using the deterministic policy gradient:
1
𝑁

∑∇𝜓𝜋𝜓 (𝑠)∇𝑎𝑄𝜃1 (𝑠, 𝑎 | 𝑑𝜓 ) |𝑎=𝜋𝜓 (𝑠 )
return 𝜋

𝜙
. . .

Once the critic𝑄𝜃 (𝑠, 𝑎 | 𝑑) is trained, it can be used to improve the fitness of any solutions in the archive, as described
in Algorithm 3. First, a parent solution 𝜋𝜓 is selected from the archive and we denote its descriptor by 𝑑𝜓 := 𝐷 (𝜋𝜓 ).
Notice that this policy 𝜋𝜓 (𝑠) is not descriptor-conditioned, contrary to the actor 𝜋𝜙 (𝑠 | 𝑑). Second, we apply the PG
variation operator from Equation (7), for𝑚 gradient steps, using the descriptor 𝑑𝜓 to condition the critic:

∇𝜓 𝐽 (𝜓 ) =
1
𝑁

∑︁
∇𝜓𝜋𝜓 (𝑠)∇𝑎𝑄𝜃1 (𝑠, 𝑎 | 𝑑𝜓 ) |𝑎=𝜋𝜓 (𝑠 ) (7)

The goal is to improve the quality of the solution 𝜋𝜓 , while keeping the same diversity 𝑑𝜓 . To that end, the critic is used
to evaluate actions and guides 𝜋𝜓 to (1) improve fitness, while (2) achieving descriptor 𝑑𝜓 .

4.5 Descriptor-Conditioned Actor Injection

Algorithm 4 Descriptor-conditioned Actor Injection

function actor_injection(𝜋𝜙 )
𝑑1, . . . , 𝑑𝑏AI ∼ U(D)
𝜓1, . . . ,𝜓𝑏AI ← parameters_recomputation(𝜋𝜙 (. | 𝑑1), . . . , 𝜋𝜙 (. | 𝑑𝑏AI ))
return 𝜋𝜓1 , . . . , 𝜋𝜓𝑏AI

In PGA-MAP-Elites, the actor is injected in the offsprings and considered for addition in the archive at each
generation. Empirical analyses [13] have demonstrated the importance of actor injection to achieve good performance.
Similarly to PGA-MAP-Elites, we devise a descriptor-conditioned actor injection (AI) mechanism, to improve the
performance of our method, DCG-MAP-Elites-AI.

There is however a significant challenge. The GA isoline variation operator [44] used in PGA-MAP-Elites and
DCG-MAP-Elites GECCO requires that all policies in the archive share the same architecture. However, in DCG-MAP-
Elites-AI, the actor is descriptor-conditioned, while the policies in the archive are not. Thus, the first layer of the actor
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is larger because it takes as input a state and a descriptor, while the first layer of the policies in the archive are smaller
because they take as input only a state. Specifically, for the first layer of the policies in the archive, the weights are a
matrix of dimension (dim(S), 128) and the biases are a vector of dimension 128. In contrast, for the first layer of the
descriptor-conditioned actor, the weights are a matrix of dimension (dim(S) + dim(D), 128) and the biases are a vector
of dimension 128. In both cases, the first hidden layer has 128 neurons, and the subsequent layers are the same.

However, for a given fixed descriptor 𝑑 , we can consider that the constant descriptor 𝑑 , in 𝜋𝜙 (𝑠 | 𝑑) is not part
of the input, but part of the parameters. As a matter of fact, for a static descriptor 𝑑 , we can obtain an equivalent
specialized policy 𝜋𝜓𝑑

(𝑠) with new parameters 𝜓𝑑 , that is identical to the descriptor-conditioned actor 𝜋𝜙 (𝑠 | 𝑑), in
terms of state-action mapping. In the following, we show that, given a descriptor 𝑑 , we can ‘specialize’ the versatile
descriptor-conditioned actor into a non-descriptor-conditioned policy with the same architecture as the policies stored
in the archive. By sampling multiple descriptors, we can perform several actor injections and attempt to add specialized
versions of the versatile actor in niches where it is high-performing, circumventing the need for expensive PG variations.

We denote the concatenation operator between two vectors by | |, the weights and biases of the first layer of the
descriptor-conditioned actor byW and b. Given any states 𝑠 and a descriptor 𝑑 , we can compute the first layer of the
descriptor-conditioned actor as (𝑠 | |𝑑)⊺W + b = 𝑠⊺W1 + (𝑑⊺W2 + b), with W1 a matrix of dimension (dim(S), 128)
and W2 a matrix of dimension (dim(D), 128). Therefore, we can reinterpret the computation of the first layer as
the state 𝑠 multiplied with the matrix W1 plus the bias 𝑑⊺W2 + b. Notice that the matrix W1 and bias 𝑑⊺W2 + b
have the same dimension as the policies in the archive. Thus, if the remaining layers have the same size, we can
recompute the parameters of the first layer, in order to match the architectures and inject the specialized versions of
the descriptor-conditioned actor in the archive.

In DCG-MAP-Elites-AI implementation, we uniformly sample 𝑏AI = 64 descriptors 𝑑1, ..., 𝑑𝑏AI in the descriptor
space D. Then, we specialize the descriptor-conditioned actor by recomputing its parameter for each sample descriptor.
At each generation, the resulting policies are suggested for addition in the archive, see Algorithm 4.

5 EXPERIMENTS

Each experiment is replicated 20 times with random seeds, over one million evaluations and the implementations
are based on the QDax library [3]. The full source code will be made available upon acceptance, in a containerized
environment in which all the experiments and figures can be reproduced. For the quantitative results, we report p-values
based on the Wilcoxon–Mann–Whitney𝑈 test with Holm-Bonferroni correction.

5.1 Tasks

We evaluate DCG-MAP-Elites-AI on seven continuous control locomotion QD tasks [31] implemented in Brax [18] and
derived from standard RL benchmarks, see Table 1. Ant Omni, AntTrap Omni and Humanoid Omni are omnidirectional

tasks, in which the objective is to minimize energy consumption and the descriptor is the final position of the agent.
Walker Uni, HalfCheetah Uni, Ant Uni and Humanoid Uni are unidirectional task in which the objective is to go forward
as fast as possible while minimizing energy consumption and the descriptor is the feet contact rate for each foot of the
agent. Walker Uni, HalfCheetah Uni, Ant Uni were introduced in PGA-MAP-Elites paper [31] and Humanoid Uni,
Ant Omni, Humanoid Omni were introduced by Flageat et al. [15]. AntTrap Omni is adapted from QD-PG paper [34],
the only difference being the elimination of the forward term in the reward function. We introduce AntTrap Omni to
evaluate DCG-MAP-Elites-AI on a deceptive, omnidirectional environment. The trap creates a discontinuity of fitness
in the descriptor space as points on both sides of the trap are close, but require two different trajectories to achieve
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these descriptors. Thus, the descriptor-conditioned critic needs to learn that discontinuity to provide accurate policy
gradients.

PGA-MAP-Elites has previously shown state-of-the-art results on unidirectional tasks, in particular Walker Uni,
HalfCheetah Uni and Ant Uni, but tends to struggle on omnidirectional tasks. In omnidirectional tasks, the global
maximum of the fitness function is a solution that does not move, which is directly opposed to discovering how to reach
different locations. Hence, the offsprings generated by the PG variation operator will tend to move less and travel a
shorter distance. Instead, DCG-MAP-Elites-AI aims to improve the energy consumption while maintaining the ability
to reach distant locations.

Table 1. Evaluation Tasks

Ant AntTrap Humanoid Walker HalfCheetah Ant Humanoid
Omni Omni Omni Uni Uni Uni Uni

State Position and velocity of body parts
Action Torques applied at the hinge joints
State dim 30 30 245 18 19 30 245
Action dim 8 8 17 6 6 8 17
Descriptor dim 2 2 2 2 2 4 2
Episode len 250 250 1000 1000 1000 1000 1000
Parameters 21,512 21,512 50,193 19,718 19,846 21,512 50,193

5.2 Main Results

5.2.1 Baselines. We compare DCG-MAP-Elites-AI with four state-of-the-art algorithms, namely MAP-Elites [43],
MAP-Elites-ES [7], PGA-MAP-Elites [31] and QD-PG [34].

5.2.2 Metrics. We consider the QD score, coverage and max fitness to evaluate the final populations (i.e. archives)
of all algorithms throughout training, as defined in Flageat et al. [15], Pugh et al. [35] and used in PGA-MAP-Elites
paper [31]. The main metric is the QD score, which represents the sum of fitness of all solutions stored in the archive.
This metric captures both the quality and the diversity of the population. In the tasks considered, the fitness is always
positive, which avoids penalizing algorithms for finding additional solutions. We also consider the coverage, which
represents the proportion of filled cells in the archive, measuring descriptor space illumination. Finally, we also report
the max fitness, which is defined as the fitness of the best solution in the archive.

5.2.3 Results. The experimental results presented in Figure 2 demonstrate that DCG-MAP-Elites-AI achieves equal or
higher QD score and coverage than all baselines on all tasks, especially PGA-MAP-Elites, the previous state-of-the-art.
On Ant Uni and Humanoid Uni, DCG-MAP-Elites-AI achieves a higher median QD score but not significantly. On all
other tasks, DCG-MAP-Elites-AI achieves a significantly higher QD score (𝑝 < 0.003), demonstrating that our method
generates populations of solutions that are higher-performing and more diverse. Especially, the coverage metric shows
that DCG-MAP-Elites-AI surpasses the exploration capabilities of QD-PG on all tasks (𝑝 < 0.05). DCG-MAP-Elites-AI
significantly outperforms the GECCO version [12] on all environments except Ant Uni (𝑝 < 0.01), where they perform
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similarly, showing that the improvements made to the algorithm are beneficial. DCG-MAP-Elites-AI also achieves equal
or significantly better max fitness on all environments except on HalfCheetah Uni and Ant Uni, where PGA-MAP-Elites
is better, showing room for improvement. Finally, we also show that our method still benefits from the exploration
power of the GA operator even in deceptive environment like AntTrap Omni. The experimental results confirm that
DCG-MAP-Elites-AI is able to overcome the limits of PGA-MAP-Elites on omnidirectional tasks while performing
better on the unidirectional tasks (𝑝 < 0.005) except Ant Uni where our method is not significantly better. Thus,
confirming the interest of having a descriptor-conditioned gradient to make the PG variation operator fruitful in a wider
range of tasks. Overall, DCG-MAP-Elites-AI shows competitive performance on all metrics and tasks, hence proving
to be the first successful effort in the QD-RL literature to achieve well on both the unidirectional and omnidirectional
tasks. Previous efforts were usually adapted to either one or the other [31, 34, 42].
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Fig. 2. QD score, coverage and max fitness (Section 5.2.2) for DCG-MAP-Elites-AI and all baselines on all tasks. Each experiment is

replicated 20 times with random seeds. The solid line is the median and the shaded area represents the first and third quartiles.

Qualitative results in Figure 3 also show that DCG-MAP-Elites-AI discovers solutions that are more diverse and
higher-performing than other baselines on Ant Omni task. The final archives for all algorithms and on all tasks are
provided in Appendix A.1.
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5.3 Ablations

5.3.1 Ablation studies. Wealso compareDCG-MAP-Elites-AIwith three ablations, namelyDCG-MAP-Elites GECCO [12],
Ablation AI and Ablation Actor. In DCG-MAP-Elites GECCO, there is no actor injection, but we perform actor evalua-
tion instead to provide on-policy samples to the TD3 algorithm. In Ablation AI, there is no actor injection and no actor
evaluation. In Ablation Actor, the actor is not descriptor-conditioned, removing the archive distillation component, but
the critic is still descriptor-conditioned.

5.3.2 Results. We perform two ablation experiments to show the importance of actor injection and of the descriptor-
conditioned actor. AI proves significantly beneficial in terms of QD score, on all tasks (𝑝 < 0.05) except Ant Uni where
they perform comparably. Having a descriptor-conditioned actor 𝜋𝜙 ( . | 𝑑) rather than a normal actor 𝜋𝜙 ( . ) proves
significantly beneficial in terms of QD score, on all tasks (𝑝 < 10−4), demonstrating that the descriptor-conditioned actor
enables archive distillation while being beneficial for the critic’s training. DCG-MAP-Elites GECCO achieves equal or
higher QD score than the AI ablation, showing the importance of on-policy samples. Overall, DCG-MAP-Elites-AI
shows competitive performance on all metrics and tasks compared to the ablations, hence proving the importance of
the different enhancements compared to PGA-MAP-Elites.
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Fig. 4. QD score, coverage and max fitness (Section 5.2.2) for DCG-MAP-Elites-AI and the ablations on all tasks. Each experiment is

replicated 20 times with random seeds. The solid line is the median and the shaded area represents the first and third quartiles.

5.4 Reproducibility

5.4.1 Reproducibility Metrics. We also consider three metrics to evaluate the reproducibility of the final archives for all
algorithms and of the descriptor-conditioned actor for DCG-MAP-Elites-AI, at the end of training. QD algorithms
based on MAP-Elites output a population of solutions that we evaluate with the QD score, coverage and max fitness,
see Section 5.2.2. However, these metrics can be misleading because in stochastic environments, a solution might give
different fitnesses and descriptors when evaluated multiple times. Consequently, the QD score, coverage and max
fitness can be overestimated, an effect that is well-known and that has been studied in the past [14]. An archive of
solutions is considered reproducible, if the QD score, coverage and max fitness does not change substantially after
multiple reevaluation of the individuals. Thus, to assess the reproducbility of the archives, we consider the expected
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QD score, the expected distance to descriptor and the expected max fitness. To calculate those metrics, we reevaluate
each solution in the archive 512 times, to approximate its expected fitness and expected distance to descriptor. The
expected distance to descriptor of a solution is simply the expected euclidean distance between the descriptor of the
cell of the individual and the observed descriptors. Therefore, for the expected distance to descriptor, lower is better.
We use the expected fitness and expected distance to descriptor of all solutions to calculate the expected QD score,
expected distance to descriptor and expected max fitness of the archive.

Additionally, DCG-MAP-Elites-AI’s descriptor-conditioned actor can in principle achieve different descriptors and
thus, is comparable to an archive. Similarly to the archive, we evaluate its expected QD score, expected distance to
descriptor and expected max fitness. To that end, we take the descriptor 𝑑 of each filled cell in the corresponding archive,
and evaluate the actor 𝜋𝜙 ( . | 𝑑) 512 times, to approximate its expected fitness and expected distance to descriptor.
Analogously to the archive, we use the expected fitnesses and expected distances to descriptor to calculate the expected
QD score, expected distance to descriptor and expected max fitness of the descriptor-conditioned actor.
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Fig. 5. Expected QD score, expected distance to descriptor (lower is better) and expected max fitness (Section 5.4.1) for DCG-MAP-

Elites-AI, the descriptor-conditioned policy and the baselines on all tasks. Each experiment is replicated 20 times with random seeds.

5.4.2 Results. In Figure 5, we provide the expected QD score, expected distance to descriptor and expected max fitness
of the final archive and the descriptor-conditioned policy, see Section 5.4.1. First, we can see that DCG-MAP-Elites-AI’s
final archive achieves equal or higher expected QD score than all baselines on all tasks. The descriptor-conditioned
actor performs similarly to DCG-MAP-Elites-AI on most environments, but performs significantly worse on Ant
Uni. This shows that, in most cases, the descriptor-conditioned actor is able to restore the quality of the archive
although having compressed the information in a single network. Second, DCG-MAP-Elites-AI obtains better expected
distance to descriptor (lower is better) than all baselines except MAP-Elites-ES on all tasks. However, MAP-Elites-ES
obtains worse QD score and most importantly, worst coverage, making it easier for MAP-Elites-ES to achieve a low
expected distance to descriptor. DCG-MAP-Elites-AI descriptor-conditioned actor obtains similar expected distance to
descriptor on omnidirectional. However, it performs consistently worse on unidirectional tasks. This shows that in
some cases, while compressing the quality of the archive in a single network, the descriptor-conditioned actor can
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also exhibit the same diversity as the population. Those two combined observations show that the final archive and
descriptor-conditioned policy have similar properties on omnidirectional tasks. Overall, those results show that our
single descriptor-conditioned policy can already be seen as a promising summary of our archive, showing very similar
properties on half our tasks.

5.5 Variation Operators Evaluation

5.5.1 Variation Operator Metrics. DCG-MAP-Elites-AI and PGA-MAP-Elites make use of a GA variation operator
and of a PG variation operator. The GA variation operator is strictly the same in both algorithms. However, DCG-MAP-
Elites-AI enhances PGA-MAP-Elites’s PG variation operator with a descriptor-conditioned critic, as explained in
Section 4.4. To evaluate the performance of each variation operator, we introduce a metric defined as the accumulated
number of offsprings added to the archive coming from each variation operator throughout training, that we call
number of elites. By tracking the number of elites generated by each variation operator over the course of training,
we can analyze the interaction and dynamics between the different variation operators and actor injection, providing
insights into the relative contributions of the different components.
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Fig. 6. Accumulated number of offsprings added to the archive (Section 5.5.1) for (top) GA variation operator and (bottom) PG

variation operator plus Actor Injection (AI). Each experiment is replicated 20 times with random seeds. The solid line is the median

and the shaded area represents the first and third quartiles.

5.5.2 Results. On the top row of Figure 6, we can see the accumulated number of elites for the GA variation operator
for DCG-MAP-Elites-AI, PGA-MAP-Elites and ablation AI throughout training. In all three cases, the number of
offsprings suggested for addition in the archive is 128. On the bottom row of Figure 6, we can see the accumulated
number of elites for the PG variation operator. In all three cases, the number of offsprings suggested for addition in
the archive is 128, but for DCG-MAP-Elites-AI, the PG variation is divided into 64 coming from the actor injection
(Section 4.5) and 64 coming from the PG update using the descriptor-conditioned critic (Section 4.4). First, we can see
that the ablation of the actor injection generates a larger number of elites than PGA-MAP-Elites, demonstrating that
the descriptor-conditioned critic generates higher-performing and more diverse solution than the traditional critic used
in PGA-MAP-Elites. Furthermore, we can see that DCG-MAP-Elites-AI with actor injection mechanism generates
even more elites than the descriptor-conditioned PG variation operator alone. Interestingly, we can see that the number
of elites generated by DCG-MAP-Elites-AI is higher than PGA-MAP-Elites, even though the GA variation operators
are exactly the same. This demonstrates that the solutions found by the descriptor-conditioned PG variation operator
are better stepping stones.
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6 CONCLUSION

In this work, we introduce DCG-MAP-Elites-AI and demonstrate the benefits of having descriptor-conditioned
gradients to evolve populations of large neural networks. We concurrently train a descriptor-conditioned actor, as a
by-product of the critic’s training, that can achieve a diversity of high-performing behaviors. In turn, we inject the
trained descriptor-conditioned actor in the population, despite network architecture differences, speeding-up training
even more. Our method, DCG-MAP-Elites-AI, achieves equal or better performance than all baselines on seven
continuous control locomotion tasks. We also show that the synergy between the fitness improvement capabilities of
the PG variations and the exploration capabilities of the GA variations is preserved, even in deceptive environments.
The descriptor-conditioned actor demonstrates performance that are similar to the discrete archive, summarizing its
capabilities into one single neural network and acting as a continuous archive. We think that distilling the archive into
a single policy is a promising method as it enables to have less redundancy compared to a discrete archive in which
most of the solutions can be similar, especially between close cells. The descriptor-conditioned policy can also negate
the burden of dealing with an archive of thousands of solutions in practical applications.

The benefits of combining RL methods with PGA-MAP-Elites come with the limitations of MDP settings. Specifically,
we are limited to evolving differentiable solutions and the foundations of RL algorithms rely on the Markov property
and full observability. In this work in particular, we face challenges with the Markov property because the descriptors
depend on full trajectories. Thus, the scaled reward introduced in our method depends on the full trajectory and not
only on the current state and action. The performance of the descriptor-conditioned policy also shows that there is
room for improvement to better distill the knowledge of the archive.

For future work, we would like to investigate the generalization capabilities of the descriptor-conditioned policy
trained with DCG-MAP-Elites-AI and try to produce solutions with descriptors that are not in the archive, performing
descriptor space generalization. In our method, the critic attempts to mutate solutions to produce offspring with higher
fitness while keeping their descriptors constant. We think that we could use the descriptor-conditioned critic to mutate
solutions to produce offspring towards different descriptors, thereby explicitly promoting diversity.
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A SUPPLEMENTARY RESULTS

A.1 Archives

We provide the archives obtained at the end of training for each algorithm on all environments. For each (algorithm,
environment) pair, we select the most representative seed with the QD score closest to the median QD score over all
seeds to avoid cherry picking.
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Fig. 7. Ant Omni Archive at the end of training for all algorithms.
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B ALGORITHMS

B.1 DCG-MAP-Elites-AI

Algorithm 5 DCG-MAP-Elites-AI
Require: GA batch size 𝑏GA, PG batch size 𝑏PG, Actor Injection batch size 𝑏AI, total batch size 𝑏 = 𝑏GA + 𝑏PG + 𝑏AI

Initialize archive X with 𝑏 random solutions and replay buffer B
Initialize critic networks 𝑄𝜃1 , 𝑄𝜃2 and actor network 𝜋𝜙
𝑖 ← 0
while 𝑖 < 𝐼 do

train_actor_critic(𝜋𝜙 , 𝑄𝜃1 , 𝑄𝜃2 ,B)
𝜋𝜓1 , . . . , 𝜋𝜓𝑏

← selection(X)
𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏GA
← variation_ga(𝜋𝜓1 , . . . , 𝜋𝜓𝑏GA

)
𝜋
𝜓𝑏GA+1

, . . . , 𝜋
𝜓𝑏GA+𝑏PG

← variation_pg(𝜋𝜓𝑏GA+1
, . . . , 𝜋𝜓𝑏GA+𝑏PG

, 𝑄𝜃1 ,B)
𝜋
𝜓𝑏GA+𝑏PG+1

, . . . , 𝜋
𝜓𝑏
← actor_injection(𝜋𝜙 )

addition(𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏
,X,B)

𝑖 ← 𝑖 + 𝑏
function addition(𝜋

𝜓
. . . ,X,B)

for 𝜋
𝜓
. . . do

(𝑓 , transitions) ← 𝐹 (𝜋
𝜓
), 𝑑 ← 𝐷 (𝜋

𝜓
)

insert(B, transitions)
if X(𝑑) = ∅ or 𝐹 (X(𝑑)) < 𝑓 then
X(𝑑) ← 𝜋

𝜓

Algorithm 6 Descriptor-conditioned Actor-Critic Training

function train_actor_critic(𝜋𝜙 , 𝑄𝜃1 , 𝑄𝜃2 ,B)
for 𝑡 = 1→ 𝑛 do

Sample 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑, 𝑑′) from B
Sample smoothing noise 𝜖
𝑦 ← 𝑆 (𝑑, 𝑑′) 𝑟 + 𝛾 min

𝑖=1,2
𝑄𝜃 ′

𝑖
(𝑠′, 𝜋𝜙 ′ (𝑠′ | 𝑑′) + 𝜖 | 𝑑′)

Update both critics by regression to 𝑦
if 𝑡 mod Δ then

Update actor using the deterministic policy gradient:
1
𝑁

∑∇𝜙𝜋𝜙 (𝑠 | 𝑑′)∇𝑎𝑄𝜃1 (𝑠, 𝑎 | 𝑑′) |𝑎=𝜋𝜙 (𝑠 |𝑑 ′ )
Soft-update target networks 𝑄𝜃𝑖′ and 𝜋𝜙 ′
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Algorithm 7 Descriptor-conditioned PG Variation

function variation_pg(𝜋𝜓 . . . , 𝑄𝜃1 ,B)
for 𝜋𝜓 . . . do

𝑑𝜓 ← 𝐷 (𝜋𝜓 )
for 𝑖 = 1→𝑚 do

Sample 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑, 𝑑′) from B
Update actor using the deterministic policy gradient:
1
𝑁

∑∇𝜓𝜋𝜓 (𝑠)∇𝑎𝑄𝜃1 (𝑠, 𝑎 | 𝑑𝜓 ) |𝑎=𝜋𝜓 (𝑠 )
return 𝜋

𝜙
. . .

Algorithm 8 Descriptor-conditioned Actor Injection

function actor_injection(𝜋𝜙 )
𝑑1, . . . , 𝑑𝑏AI ∼ U(D)
𝜓1, . . . ,𝜓𝑏AI ← parameters_recomputation(𝜋𝜙 (. | 𝑑1), . . . , 𝜋𝜙 (. | 𝑑𝑏AI ))
return 𝜋𝜓1 , . . . , 𝜋𝜓𝑏AI

B.2 PGA-MAP-Elites

Algorithm 9 PGA-MAP-Elites
Require: GA batch size 𝑏GA, PG batch size 𝑏PG, total batch size 𝑏 = 𝑏GA + 𝑏PG

Initialize archive X with 𝑏 random solutions and replay buffer B
Initialize critic networks 𝑄𝜃1 , 𝑄𝜃2 and actor network 𝜋𝜙

𝑖 ← 0
while 𝑖 < 𝐼 do

train_actor_critic(𝜋𝜙 , 𝑄𝜃1 , 𝑄𝜃2 ,B)
𝜋𝜓1 , . . . , 𝜋𝜓𝑏−1 ← selection(X)
𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏GA
← variation_ga(𝜋𝜓1 , . . . , 𝜋𝜓𝑏GA

)
𝜋
𝜓𝑏GA+1

, . . . , 𝜋
𝜓𝑏−1
← variation_pg(𝜋𝜓𝑏GA+1

, . . . , 𝜋𝜓𝑏−1 , 𝑄𝜃1 ,B)
𝜋
𝜓𝑏
← actor_injection(𝜋𝜙 )

addition(X, 𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏−1
, 𝜋𝜙 ,B)

𝑖 ← 𝑖 + 𝑏
function addition(X, 𝜋

𝜓
. . . ,B)

for 𝜋
𝜓
. . . do

(𝑓 , transitions) ← 𝐹 (𝜋
𝜓
), 𝑑 ← 𝐷 (𝜋

𝜓
)

insert(B, transitions)
if X(𝑑) = ∅ or 𝐹 (X(𝑑)) < 𝑓 then
X(𝑑) ← 𝜋

𝜓
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Algorithm 10 Actor-Critic Training

function train_actor_critic(𝜋𝜙 , 𝑄𝜃1 , 𝑄𝜃2 ,B)
for 𝑡 = 1→ 𝑛 do

Sample 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′) from B
Sample smoothing noise 𝜖
𝑦 ← 𝑟 + 𝛾 min

𝑖=1,2
𝑄𝜃 ′

𝑖
(𝑠′, 𝜋𝜙 ′ (𝑠′) + 𝜖)

Update both critics by regression to 𝑦
if 𝑡 mod Δ then

Update actor using the deterministic policy gradient:
1
𝑁

∑∇𝜙𝜋𝜙 (𝑠)∇𝑎𝑄𝜃1 (𝑠, 𝑎) |𝑎=𝜋𝜙 (𝑠 )
Soft-update target networks 𝑄𝜃𝑖′ and 𝜋𝜙 ′

Algorithm 11 PG Variation

function variation_pg(𝜋𝜓 . . . , 𝑄𝜃1 ,B)
for 𝜋𝜓 . . . do

for 𝑖 = 1→𝑚 do
Sample 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′) from B
Update actor using the deterministic policy gradient:
1
𝑁

∑∇𝜓𝜋𝜓 (𝑠)∇𝑎𝑄𝜃1 (𝑠, 𝑎) |𝑎=𝜋𝜓 (𝑠 )

return 𝜋
𝜓
. . .

Algorithm 12 Actor Injection

function actor_injection(𝜋𝜙 )
return 𝜋𝜙
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B.3 QD-PG

Algorithm 13 QD-PG
Require: GA batch size 𝑏GA, QPG batch size 𝑏QPG, DPG batch size 𝑏DPG, total batch size 𝑏 = 𝑏GA + 𝑏QPG + 𝑏DPG

Initialize archive X with 𝑏 random solutions and replay buffer B
Initialize critic networks 𝑄𝜃𝑄 , 𝑄𝜃𝐷 and actor network 𝜋𝜙
𝑖 ← 0
while 𝑖 < 𝐼 do

train_actor_critic(𝜋𝜙 , 𝑄𝜃𝑄 , 𝑄𝜃𝐷 ,B)
𝜋𝜓1 , . . . , 𝜋𝜓𝑏

← selection(X)
𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏GA
← variation_ga(𝜋𝜓1 , . . . , 𝜋𝜓𝑏GA

)
𝜋
𝜓𝑏GA+1

, . . . , 𝜋
𝜓𝑏GA+𝑏QPG

← variation_qpg(𝜋𝜓𝑏GA+1
, . . . , 𝜋𝜓𝑏GA+𝑏QPG

, 𝑄𝜃𝑄 ,B)
𝜋
𝜓𝑏GA+𝑏QPG+1

, . . . , 𝜋
𝜓𝑏
← variation_dpg(𝜋𝜓𝑏GA+𝑏QPG+1

, . . . , 𝜋𝜓𝑏
, 𝑄𝜃𝐷 ,B)

addition(𝜋
𝜓1
, . . . , 𝜋

𝜓𝑏
,X,B)

𝑖 ← 𝑖 + 𝑏
function addition(X,B, 𝜋𝜙 , 𝜋𝜓 . . . )

for 𝑑′ ∈ D sampled from 𝑏 solutions in X do
(𝑓 , transitions) ← 𝐹 (𝜋𝜙 ( . | 𝑑′))
insert(B, transitions)

for 𝜋
𝜓
. . . do

(𝑓 , transitions) ← 𝐹 (𝜋
𝜓
), 𝑑 ← 𝐷 (𝜋

𝜓
)

insert(B, transitions)
if X(𝑑) = ∅ or 𝐹 (X(𝑑)) < 𝑓 then
X(𝑑) ← 𝜋

𝜓
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B.4 MAP-Elites

Algorithm 14MAP-Elites
Require: GA batch size 𝑏GA

Initialize archive X with 𝑏GA random solutions
𝑖 ← 0
while 𝑖 < 𝐼 do

𝑥1, . . . , 𝑥𝑏GA ← selection(X)
𝑥1, . . . , 𝑥𝑏GA ← variation(𝑥1, . . . , 𝑥𝑏GA )
addition(X, 𝑥1, . . . , 𝑥𝑏GA )
𝑖 ← 𝑖 + 𝑏GA

function addition(X, 𝑥 . . . ) :
for 𝑥 . . . do

𝑓 ← 𝐹 (𝑥), 𝑑 ← 𝐷 (𝑥)
if X(𝑑) = ∅ or 𝐹 (X(𝑑)) < 𝑓 then
X(𝑑) ← 𝑥
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B.5 MAP-Elites-ES

Algorithm 15 MAP-Elites-ES
Require: Number of ES samples 𝑁 , standard deviation of ES samples 𝜎 , explore-exploit alternation 𝑁𝑔𝑒𝑛 , number of

re-sampling𝑀
Initialize archive X with 𝑁 random solutions, initialise empty novelty archive A
𝑖 ← 0
while 𝑖 < 𝐼 do

if 𝑖%𝑁𝑔𝑒𝑛 == 0 then:
𝑥 ← selection_exploit(X)
𝑥 ← variation_exploit(𝑥)

else:
𝑥 ← selection_explore(X)
𝑥 ← variation_explore(A, 𝑥)

addition(X,A, 𝑥)
𝑖 ← 𝑖 + 𝑁 +𝑀

function addition(X,A, 𝑥 ) :
for 𝑖 = 1, . . . , 𝑀 do

𝑓𝑖 ← 𝐹 (𝑥)), 𝑑𝑖 ← 𝐷 (𝑥))
𝑓 ← average(𝑓𝑖 ), 𝑑 ← average(𝑑𝑖 )
A ← A + 𝑑
if X(𝑑) = ∅ or 𝐹 (X(𝑑)) < 𝑓 then
X(𝑑) ← 𝑥

function variation_exploit(𝑥 ) :
𝑥1, . . . , 𝑥𝑁 ← sample_gaussian(𝑥, 𝜎)
𝑓1, . . . , 𝑓𝑁 ← 𝐹 (𝑥1, . . . , 𝑥𝑁 )
𝑥 ← es_step(𝑥, 𝑓1, . . . , 𝑓𝑁 )

function variation_explore(A, 𝑥) :
𝑥1, . . . , 𝑥𝑁 ← sample_gaussian(𝑥, 𝜎)
𝑑1, . . . , 𝑑𝑁 ← 𝐷 (𝑥1, . . . , 𝑥𝑁 )
𝑛𝑜𝑣1, . . . , 𝑛𝑜𝑣𝑁 ← novelty(A, 𝑑1, . . . , 𝑑𝑁 )
𝑥 ← es_step(𝑥, 𝑛𝑜𝑣1, . . . , 𝑛𝑜𝑣𝑁 )
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C HYPERPARAMETERS

C.1 DCG-MAP-Elites-AI

Table 2. DCG-MAP-Elites-AI hyperparameters

Parameter Value

Number of centroids 1024
Total batch size 𝑏 256
GA batch size 𝑏GA 128
PG batch size 𝑏PG 64
AI batch size 𝑏AI 64
Policy networks [128, 128, |A|]

GA variation param. 1 𝜎1 0.005
GA variation param. 2 𝜎2 0.05

Actor network [128, 128, |A|]
Critic network [256, 256, 1]
TD3 batch size 𝑁 100
Critic training steps 𝑛 3000
PG training steps𝑚 150
Policy learning rate 5 × 10−3

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Replay buffer size 106

Discount factor 𝛾 0.99
Actor delay Δ 2
Target update rate 0.005
Smoothing noise var. 𝜎 0.2
Smoothing noise clip 0.5

Length scale 𝑙 0.1
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C.2 PGA-MAP-Elites

Table 3. PGA-MAP-Elites hyperparameters

Parameter Value

Number of centroids 1024
Total batch size 𝑏 256
GA batch size 𝑏GA 128
PG batch size 𝑏PG 127
AI batch size 𝑏AI 1
Policy networks [128, 128, |A|]

GA variation param. 1 𝜎1 0.005
GA variation param. 2 𝜎2 0.05

Actor network [128, 128, |A|]
Critic network [256, 256, 1]
TD3 batch size 𝑁 100
Critic training steps 𝑛 3000
PG training steps𝑚 150
Policy learning rate 5 × 10−3

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Replay buffer size 106

Discount factor 𝛾 0.99
Actor delay Δ 2
Target update rate 0.005
Smoothing noise var. 𝜎 0.2
Smoothing noise clip 0.5
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C.3 QD-PG

Table 4. QD-PG hyperparameters

Parameter Value

Number of centroids 1024
Total batch size 𝑏 256
GA batch size 𝑏GA 86
QPG batch size 𝑏PG 85
DPG batch size 𝑏PG 85
Policy networks [128, 128, |A|]

GA variation param. 1 𝜎1 0.005
GA variation param. 2 𝜎2 0.05

Actor network [128, 128, |A|]
Critic network [256, 256, 1]
TD3 batch size 𝑁 100
Quality critic training steps 𝑛 3000
Diversity critic training steps 𝑛 300
PG training steps𝑚 150
Policy learning rate 5 × 10−3

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Replay buffer size 106

Discount factor 𝛾 0.99
Actor delay Δ 2
Target update rate 0.005
Smoothing noise var. 𝜎 0.2
Smoothing noise clip 0.5

Number nearest neighbors 5
Novelty scaling ratio 1.0
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C.4 MAP-Elites

Table 5. MAP-Elites hyperparameters

Parameter Value

Number of centroids 1024
Total batch size 𝑏 256
GA batch size 𝑏GA 256
Policy networks [128, 128, |A|]

GA variation param. 1 𝜎1 0.005
GA variation param. 2 𝜎2 0.05

C.5 MAP-Elites-ES

Table 6. MAP-Elites-ES hyperparameters

Parameter Value

Number of centroids 1024
Total batch size 𝑏 256
GA batch size 𝑏GA 128
PG batch size 𝑏PG 127
AI batch size 𝑏AI 1
Policy networks [128, 128, |A|]

GA variation param. 1 𝜎1 0.005
GA variation param. 2 𝜎2 0.05

Number of samples 1000
Sample sigma 0.02
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