Growing Neural Cellular Automata
¶
Installation¶
You will need Python 3.11 or later, and a working JAX installation. For example, you can install JAX with:
In [ ]:
Copied!
%pip install -U "jax[cuda]"
%pip install -U "jax[cuda]"
Then, install CAX from PyPi:
In [ ]:
Copied!
%pip install -U "cax[examples]"
%pip install -U "cax[examples]"
Import¶
In [ ]:
Copied!
import jax
import jax.numpy as jnp
import mediapy
import optax
import PIL
from flax import nnx
from tqdm.auto import tqdm
from cax.core import ComplexSystem, Input, State
from cax.core.perceive import ConvPerceive, grad_kernel, identity_kernel
from cax.core.update import NCAUpdate
from cax.nn.pool import Pool
from cax.utils import clip_and_uint8, get_emoji, rgba_to_rgb
import jax
import jax.numpy as jnp
import mediapy
import optax
import PIL
from flax import nnx
from tqdm.auto import tqdm
from cax.core import ComplexSystem, Input, State
from cax.core.perceive import ConvPerceive, grad_kernel, identity_kernel
from cax.core.update import NCAUpdate
from cax.nn.pool import Pool
from cax.utils import clip_and_uint8, get_emoji, rgba_to_rgb
Configuration¶
In [ ]:
Copied!
seed = 0
channel_size = 16
num_kernels = 3
hidden_size = 128
cell_dropout_rate = 0.5
num_steps = 128
pool_size = 1_024
batch_size = 8
learning_rate = 2e-3
emoji = "🦎"
size = 40
pad_width = 16
key = jax.random.key(seed)
rngs = nnx.Rngs(seed)
seed = 0
channel_size = 16
num_kernels = 3
hidden_size = 128
cell_dropout_rate = 0.5
num_steps = 128
pool_size = 1_024
batch_size = 8
learning_rate = 2e-3
emoji = "🦎"
size = 40
pad_width = 16
key = jax.random.key(seed)
rngs = nnx.Rngs(seed)
Dataset¶
In [ ]:
Copied!
def get_y_from_emoji(emoji: str) -> jax.Array:
"""Get target y from an emoji."""
emoji_pil = get_emoji(emoji)
emoji_pil = emoji_pil.resize((size, size), resample=PIL.Image.Resampling.LANCZOS)
y = jnp.array(emoji_pil, dtype=jnp.float32) / 255.0
y = jnp.pad(y, ((pad_width, pad_width), (pad_width, pad_width), (0, 0)))
return y
y = get_y_from_emoji(emoji)
mediapy.show_image(y)
def get_y_from_emoji(emoji: str) -> jax.Array:
"""Get target y from an emoji."""
emoji_pil = get_emoji(emoji)
emoji_pil = emoji_pil.resize((size, size), resample=PIL.Image.Resampling.LANCZOS)
y = jnp.array(emoji_pil, dtype=jnp.float32) / 255.0
y = jnp.pad(y, ((pad_width, pad_width), (pad_width, pad_width), (0, 0)))
return y
y = get_y_from_emoji(emoji)
mediapy.show_image(y)
Instantiate system¶
In [ ]:
Copied!
class GrowingNCA(ComplexSystem):
"""Growing Neural Cellular Automata class."""
def __init__(self, *, rngs: nnx.Rngs):
"""Initialize Growing NCA.
Args:
rngs: rng key.
"""
self.perceive = ConvPerceive(
channel_size=channel_size,
perception_size=num_kernels * channel_size,
feature_group_count=channel_size,
rngs=rngs,
)
self.update = NCAUpdate(
channel_size=channel_size,
perception_size=num_kernels * channel_size,
hidden_layer_sizes=(hidden_size,),
cell_dropout_rate=cell_dropout_rate,
zeros_init=True,
rngs=rngs,
)
# Initialize kernel with sobel filters
kernel = jnp.concatenate([identity_kernel(ndim=2), grad_kernel(ndim=2)], axis=-1)
kernel = jnp.expand_dims(jnp.concatenate([kernel] * channel_size, axis=-1), axis=-2)
self.perceive.conv.kernel.value = kernel
def _step(self, state: State, input: Input | None = None, *, sow: bool = False) -> State:
perception = self.perceive(state)
next_state = self.update(state, perception, input)
if sow:
self.sow(nnx.Intermediate, "state", next_state)
return next_state
@nnx.jit
def render(self, state):
"""Render state to RGB."""
rgba = state[..., -4:]
rgb = rgba_to_rgb(rgba)
# Clip values to valid range and convert to uint8
return clip_and_uint8(rgb)
@nnx.jit
def render_rgba(self, state):
"""Render state to RGBA."""
rgba = state[..., -4:]
# Clip values to valid range and convert to uint8
return clip_and_uint8(rgba)
class GrowingNCA(ComplexSystem):
"""Growing Neural Cellular Automata class."""
def __init__(self, *, rngs: nnx.Rngs):
"""Initialize Growing NCA.
Args:
rngs: rng key.
"""
self.perceive = ConvPerceive(
channel_size=channel_size,
perception_size=num_kernels * channel_size,
feature_group_count=channel_size,
rngs=rngs,
)
self.update = NCAUpdate(
channel_size=channel_size,
perception_size=num_kernels * channel_size,
hidden_layer_sizes=(hidden_size,),
cell_dropout_rate=cell_dropout_rate,
zeros_init=True,
rngs=rngs,
)
# Initialize kernel with sobel filters
kernel = jnp.concatenate([identity_kernel(ndim=2), grad_kernel(ndim=2)], axis=-1)
kernel = jnp.expand_dims(jnp.concatenate([kernel] * channel_size, axis=-1), axis=-2)
self.perceive.conv.kernel.value = kernel
def _step(self, state: State, input: Input | None = None, *, sow: bool = False) -> State:
perception = self.perceive(state)
next_state = self.update(state, perception, input)
if sow:
self.sow(nnx.Intermediate, "state", next_state)
return next_state
@nnx.jit
def render(self, state):
"""Render state to RGB."""
rgba = state[..., -4:]
rgb = rgba_to_rgb(rgba)
# Clip values to valid range and convert to uint8
return clip_and_uint8(rgb)
@nnx.jit
def render_rgba(self, state):
"""Render state to RGBA."""
rgba = state[..., -4:]
# Clip values to valid range and convert to uint8
return clip_and_uint8(rgba)
In [ ]:
Copied!
cs = GrowingNCA(rngs=rngs)
cs = GrowingNCA(rngs=rngs)
In [ ]:
Copied!
params = nnx.state(cs, nnx.Param)
print("Number of params:", sum(x.size for x in jax.tree.leaves(params)))
params = nnx.state(cs, nnx.Param)
print("Number of params:", sum(x.size for x in jax.tree.leaves(params)))
Sample initial state¶
In [ ]:
Copied!
def sample_state():
"""Sample a state with a single alive cell."""
spatial_dims = y.shape[:2]
# Init state
state = jnp.zeros(spatial_dims + (channel_size,))
# Set the center cell to alive
mid = tuple(size // 2 for size in spatial_dims)
return state.at[mid[0], mid[1], -1].set(1.0)
def sample_state():
"""Sample a state with a single alive cell."""
spatial_dims = y.shape[:2]
# Init state
state = jnp.zeros(spatial_dims + (channel_size,))
# Set the center cell to alive
mid = tuple(size // 2 for size in spatial_dims)
return state.at[mid[0], mid[1], -1].set(1.0)
Train¶
Pool¶
In [ ]:
Copied!
state = jax.vmap(lambda _: sample_state())(jnp.zeros(pool_size))
pool = Pool.create({"state": state})
state = jax.vmap(lambda _: sample_state())(jnp.zeros(pool_size))
pool = Pool.create({"state": state})
Optimizer¶
In [ ]:
Copied!
lr_sched = optax.linear_schedule(
init_value=learning_rate, end_value=0.1 * learning_rate, transition_steps=2_000
)
optimizer = optax.chain(
optax.clip_by_global_norm(1.0),
optax.adam(learning_rate=lr_sched),
)
update_params = nnx.All(nnx.Param, nnx.PathContains("update"))
optimizer = nnx.Optimizer(cs, optimizer, wrt=update_params)
lr_sched = optax.linear_schedule(
init_value=learning_rate, end_value=0.1 * learning_rate, transition_steps=2_000
)
optimizer = optax.chain(
optax.clip_by_global_norm(1.0),
optax.adam(learning_rate=lr_sched),
)
update_params = nnx.All(nnx.Param, nnx.PathContains("update"))
optimizer = nnx.Optimizer(cs, optimizer, wrt=update_params)
Loss¶
In [ ]:
Copied!
def mse(state):
"""Mean Squared Error."""
return jnp.mean(jnp.square(state[..., -4:] - y))
def mse(state):
"""Mean Squared Error."""
return jnp.mean(jnp.square(state[..., -4:] - y))
In [ ]:
Copied!
@nnx.jit
def loss_fn(cs, state, key):
"""Loss function."""
state_axes = nnx.StateAxes({nnx.RngState: 0, nnx.Intermediate: 0, ...: None})
nnx.split_rngs(splits=batch_size)(
nnx.vmap(
lambda cs, state: cs(state, num_steps=num_steps, sow=True),
in_axes=(state_axes, 0),
)
)(cs, state)
# Get intermediate states
intermediates = nnx.pop(cs, nnx.Intermediate)
state = intermediates.state.value[0]
# Sample a random step
idx = jax.random.randint(key, (batch_size,), num_steps // 2, num_steps)
state = state[jnp.arange(batch_size), idx]
loss = mse(state)
return loss, state
@nnx.jit
def loss_fn(cs, state, key):
"""Loss function."""
state_axes = nnx.StateAxes({nnx.RngState: 0, nnx.Intermediate: 0, ...: None})
nnx.split_rngs(splits=batch_size)(
nnx.vmap(
lambda cs, state: cs(state, num_steps=num_steps, sow=True),
in_axes=(state_axes, 0),
)
)(cs, state)
# Get intermediate states
intermediates = nnx.pop(cs, nnx.Intermediate)
state = intermediates.state.value[0]
# Sample a random step
idx = jax.random.randint(key, (batch_size,), num_steps // 2, num_steps)
state = state[jnp.arange(batch_size), idx]
loss = mse(state)
return loss, state
Train step¶
In [ ]:
Copied!
@nnx.jit
def train_step(cs, optimizer, pool, key):
"""Train step."""
sample_key, loss_key = jax.random.split(key)
# Sample from pool
pool_idx, batch = pool.sample(sample_key, batch_size=batch_size)
current_state = batch["state"]
# Sort by descending loss
sort_idx = jnp.argsort(jax.vmap(mse)(current_state), descending=True)
pool_idx = pool_idx[sort_idx]
current_state = current_state[sort_idx]
# Sample a new state to replace the worst
new_state = sample_state()
current_state = current_state.at[0].set(new_state)
(loss, current_state), grad = nnx.value_and_grad(
loss_fn, has_aux=True, argnums=nnx.DiffState(0, update_params)
)(cs, current_state, loss_key)
optimizer.update(cs, grad)
pool = pool.update(pool_idx, {"state": current_state})
return loss, pool
@nnx.jit
def train_step(cs, optimizer, pool, key):
"""Train step."""
sample_key, loss_key = jax.random.split(key)
# Sample from pool
pool_idx, batch = pool.sample(sample_key, batch_size=batch_size)
current_state = batch["state"]
# Sort by descending loss
sort_idx = jnp.argsort(jax.vmap(mse)(current_state), descending=True)
pool_idx = pool_idx[sort_idx]
current_state = current_state[sort_idx]
# Sample a new state to replace the worst
new_state = sample_state()
current_state = current_state.at[0].set(new_state)
(loss, current_state), grad = nnx.value_and_grad(
loss_fn, has_aux=True, argnums=nnx.DiffState(0, update_params)
)(cs, current_state, loss_key)
optimizer.update(cs, grad)
pool = pool.update(pool_idx, {"state": current_state})
return loss, pool
Main loop¶
In [ ]:
Copied!
num_train_steps = 8_192
print_interval = 128
pbar = tqdm(range(num_train_steps), desc="Training", unit="train_step")
losses = []
for i in pbar:
key, subkey = jax.random.split(key)
loss, pool = train_step(cs, optimizer, pool, subkey)
losses.append(loss)
if i % print_interval == 0 or i == num_train_steps - 1:
avg_loss = sum(losses[-print_interval:]) / len(losses[-print_interval:])
pbar.set_postfix({"Average Loss": f"{avg_loss:.3e}"})
num_train_steps = 8_192
print_interval = 128
pbar = tqdm(range(num_train_steps), desc="Training", unit="train_step")
losses = []
for i in pbar:
key, subkey = jax.random.split(key)
loss, pool = train_step(cs, optimizer, pool, subkey)
losses.append(loss)
if i % print_interval == 0 or i == num_train_steps - 1:
avg_loss = sum(losses[-print_interval:]) / len(losses[-print_interval:])
pbar.set_postfix({"Average Loss": f"{avg_loss:.3e}"})
Run¶
In [ ]:
Copied!
num_examples = 8
state_init = jax.vmap(lambda _: sample_state())(jnp.zeros(num_examples))
state_axes = nnx.StateAxes({nnx.RngState: 0, nnx.Intermediate: 0, ...: None})
state_final = nnx.split_rngs(splits=num_examples)(
nnx.vmap(
lambda cs, state_init: cs(state_init, num_steps=2 * num_steps, sow=True),
in_axes=(state_axes, 0),
)
)(cs, state_init)
num_examples = 8
state_init = jax.vmap(lambda _: sample_state())(jnp.zeros(num_examples))
state_axes = nnx.StateAxes({nnx.RngState: 0, nnx.Intermediate: 0, ...: None})
state_final = nnx.split_rngs(splits=num_examples)(
nnx.vmap(
lambda cs, state_init: cs(state_init, num_steps=2 * num_steps, sow=True),
in_axes=(state_axes, 0),
)
)(cs, state_init)
Visualize¶
In [ ]:
Copied!
intermediates = nnx.pop(cs, nnx.Intermediate)
states = intermediates.state.value[0]
intermediates = nnx.pop(cs, nnx.Intermediate)
states = intermediates.state.value[0]
In [ ]:
Copied!
frames_final = nnx.vmap(
lambda cs, state: cs.render(state),
in_axes=(None, 0),
)(cs, state_final)
frames_final_rgba = nnx.vmap(
lambda cs, state: cs.render_rgba(state),
in_axes=(None, 0),
)(cs, state_final)
mediapy.show_images(frames_final, width=128, height=128)
mediapy.show_images(frames_final_rgba, width=128, height=128)
frames_final = nnx.vmap(
lambda cs, state: cs.render(state),
in_axes=(None, 0),
)(cs, state_final)
frames_final_rgba = nnx.vmap(
lambda cs, state: cs.render_rgba(state),
in_axes=(None, 0),
)(cs, state_final)
mediapy.show_images(frames_final, width=128, height=128)
mediapy.show_images(frames_final_rgba, width=128, height=128)
In [ ]:
Copied!
states = jnp.concatenate([state_init[:, None], states], axis=1)
frames = nnx.vmap(
lambda cs, state: cs.render(state),
in_axes=(None, 0),
)(cs, states)
mediapy.show_videos(frames, width=128, height=128, codec="gif")
states = jnp.concatenate([state_init[:, None], states], axis=1)
frames = nnx.vmap(
lambda cs, state: cs.render(state),
in_axes=(None, 0),
)(cs, states)
mediapy.show_videos(frames, width=128, height=128, codec="gif")